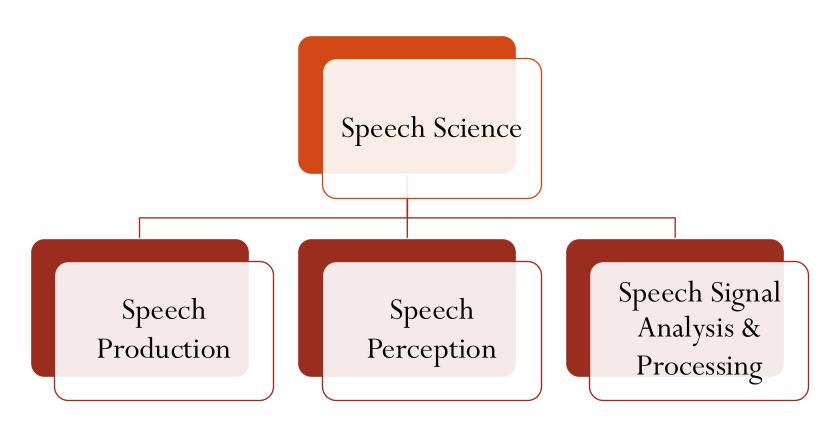
Speech Science: Articulation and Acoustics

CS578 Winter Term, 2025-26 CSD UOC

Invited Lecture

Dr Anna Sfakianaki


Assistant Professor of Phonetics/Phonology

University of Ioannina

asfakianaki@uoi.gr

Speech Science

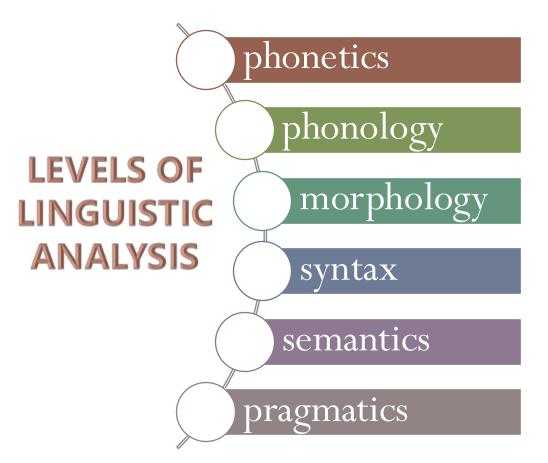
• Speech Science is the experimental study of **speech communication**.

Speech Science and Phonetics

• Speech Science has its origins in **Phonetics**

• **Phonetics** is the branch of linguistics that studies the sounds of

speech.


Field work: Peter Ladefoged

Language: Toda

Kiawiarh Village, South India, 22/01/2006

https://linguistics.ucla.edu/people/ladefoge/Remember/Index.htm

Linguistics

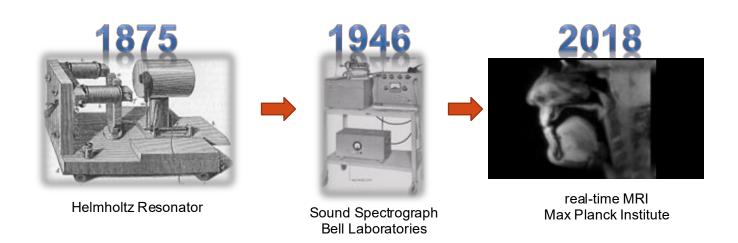
production and use of **speech sounds** in communication; articulatory and acoustic properties of speech

relations of **speech sounds** within the linguistic system

word formation and word alteration for sentence construction

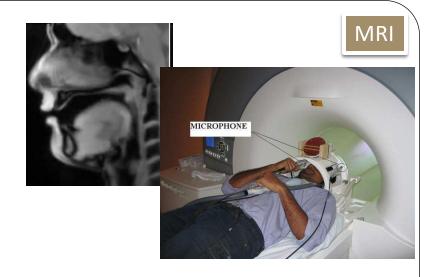
grammar rules for **sentence** construction

meaning of words, utterances, sentences


influence of context on utterance meaning

Speech Science and Phonetics

- Speech Science has its origins in **Phonetics**
 - **Phonetics** is the branch of linguistics that studies the sounds of speech.
 - The **sounds of speech** are the pieces of the linguistic code used to communicate meaning.


Adding Technology to Phonetics \rightarrow empirical investigation of speech production and perception

EPG-electropalatography

EMAelectromagnetic articulography

SPEECH SCIENCE

The instrumental study of speech

Stroboscopy

Questions posed by Speech Science

- How is speech planned and executed by the vocal system?
- How do the acoustic properties of sounds relate to their articulation?
- How and why do speech sounds vary from one context to another?
- How do listeners recover the linguistic code from auditory sensations?
- How do infants learn to produce and perceive speech?
- How and why do speech sounds vary between speakers?
- How and why do speech sounds vary across speaking styles or emotions?

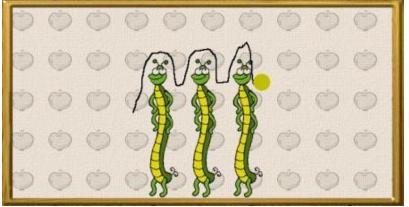
UCL, PALS1004

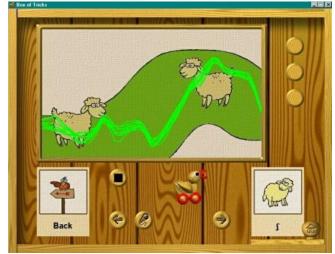
Speech Science Applications

- Core Applications
 - Speech recognition
 - Speech synthesis
 - Speaker recognition

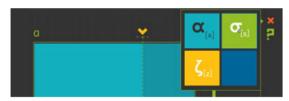
- Other applications
 - Forensic speaker comparison
 - Language pronunciation teaching
 - Assessment and therapy for disorders of speech and hearing
 - Monitoring of well-being and mood

SpeakGreek, AUTh




SPECO (SPEech COrrector)

- EU project (1998-2001)
- Visual display of acoustic information for children in need of assistance with various aspects of speech production
- Developed in 4 languages
- Multi-speaker database
- Commercial product (RCS)



SpeakGreek

https://www.enl.auth.gr/speakgreek/index.html

- Free online pronunciation training tool for learners of Greek as a foreign/second language and for people with speech and hearing disorders
- Database of 60 speakers (men, women, children)

Voice Training

It contains applications which train users to produce sounds with appropriate voicing, to sustain sounds for as long as possible, to control the intensity and pitch of their voice.

Listen And Learn

It contains applications which train users to perceive and identify correctly the Greek vowels and consonants in syllables, words, word pairs, and sentences.

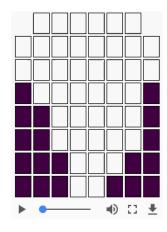
Say And Learn

It contains applications which train users to produce correctly the Greek vowels and consonants in isolation, in syllables, words, word pairs, and sentences. It also trains users to produce the appropriate melody of Greek in statements, questions, and sentences with different focus.

SpeakGreek - Phonetic Library

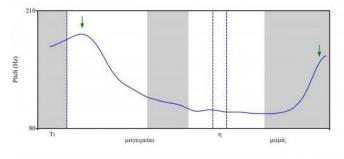
+ EPG & Ultrasound

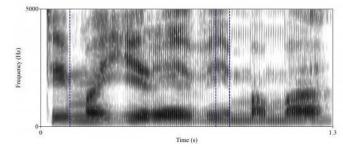
Examples:


- <(1) [i]
- 🖏 ήχοι
- 📢 φίλη
- 📢 φίδι
- είδησηησυχία

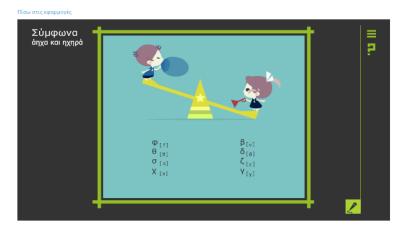
/i/: close front unrounded

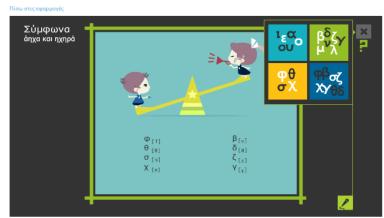
The tongue front is raised towards the hard palate. The


tongue is in advanced at The sides of the tongue lips are spread. The soft vibrate.



intonation





SpeakGreek - Voice Training

Μαθαίνω να παράγω φωνή

Μαθαίνω να παράγω φωνή

Μαθαίνω να ελέγχω την ένταση της φωνής μου

Μαθαίνω να ελέγχω την ένταση της φωνής μου

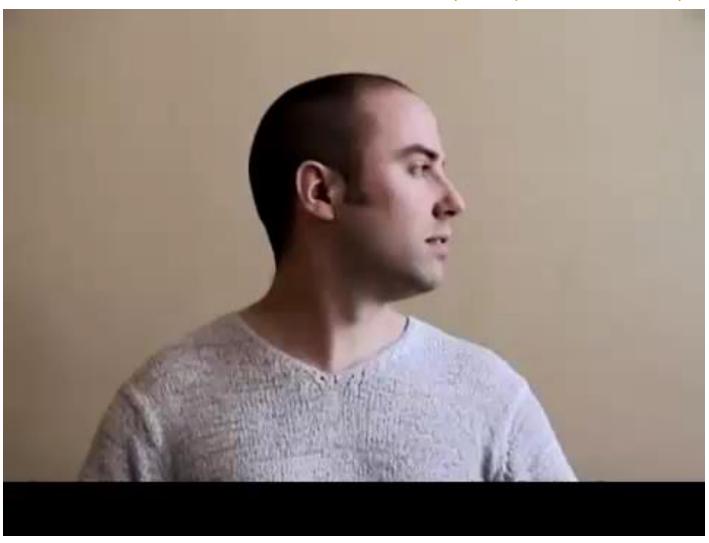
Interdisciplinary Research

- Phoneticians/Linguists + Engineers
- ENRICH: Speech modifications/enhancements for easier cognitive processing http://www.enrich-etn.eu/

https://youtu.be/ 2W52Y3IE Y

 SPAN (Speech Production and Articulation Knowledge Group) University of Southern California http://sail.usc.edu/span/index.html

Fruitful interdisciplinary cooperation

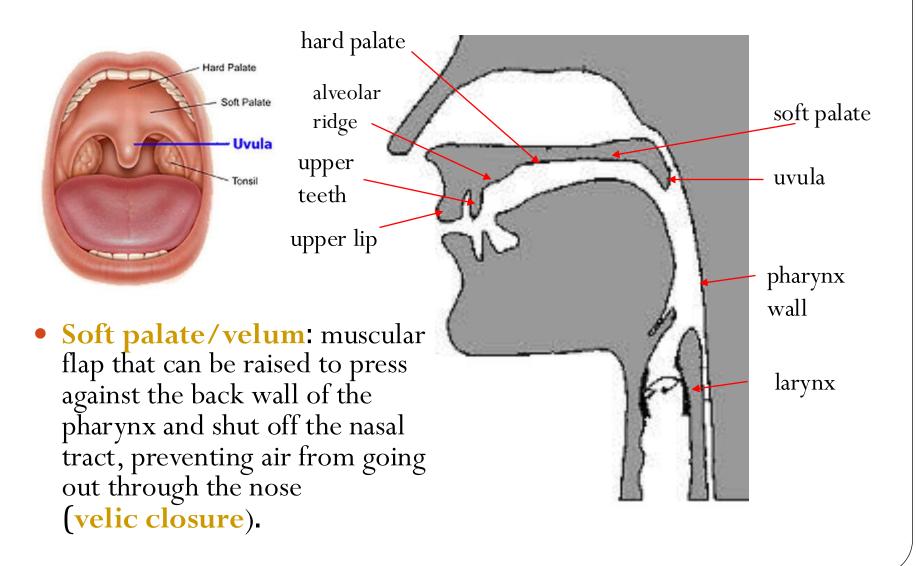

SSPL CSD, UoC

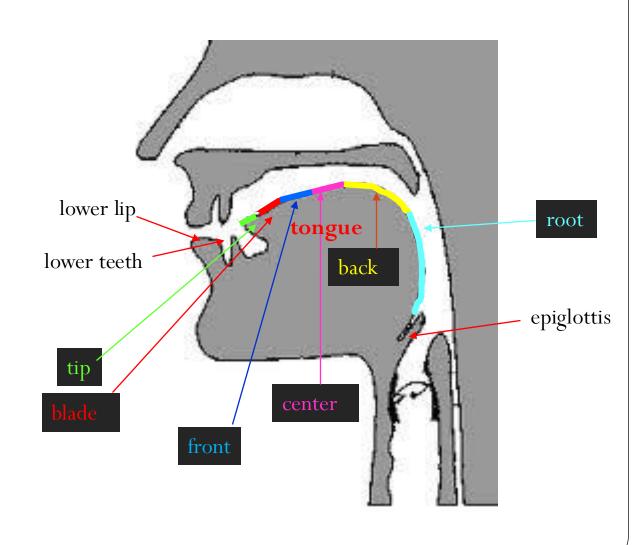
Articulation of Vowels & Consonants

Speech Production

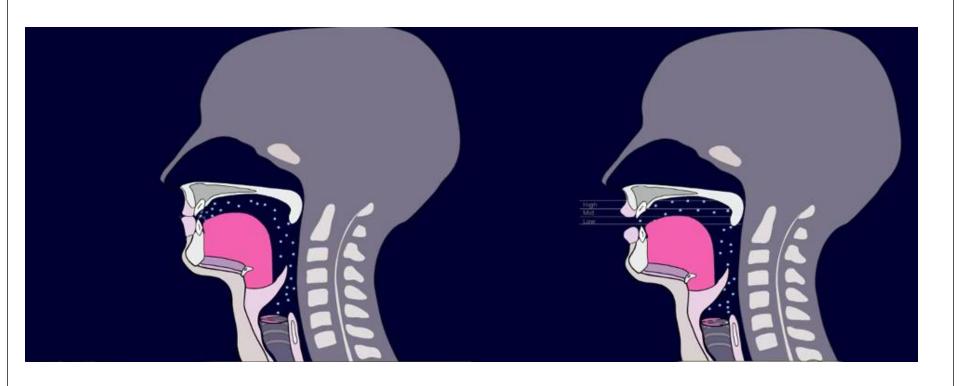
https://www.youtube.com/watch?v=osvE5Op1VzM&t=9s

Speech Production


https://www.youtube.com/watch?v=SVKR3ESdAk8


Real-time MRI span, USC University of Southern California

- The tongue and lips move rapidly from one position to another.
- The actions of the tongue are among the **fastest** and the most **precise** physical movements that people make.


Upper surface articulators

Lower surface articulators

Consonants - Vowels

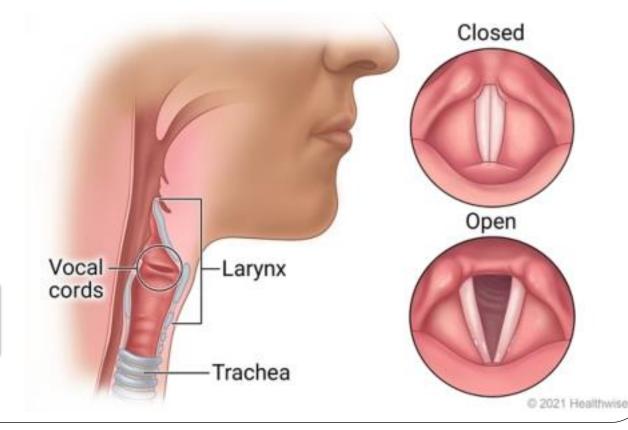


Consonants

Voicing

Manner of articulation

Place of articulation

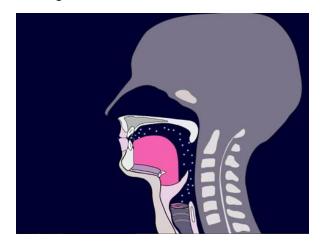


Voicing

- Open vocal folds:
 - breathing
 - production of voiceless sounds

Vocal folds

- <u>Closed</u> vocal folds:
 - production of voiced sounds (phonation)

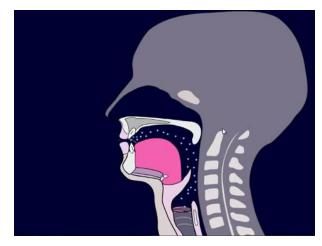


Exercise: [fffffffffvvvvvvvffffffffffvvvv]

Voicing

- Open vocal folds:
 - breathing
 - production of voiceless sounds

[p] voiceless



https://www.youtube.com/watch?v=LsAjJwC4JTQ

Vocal folds

- <u>Closed</u> vocal folds:
 - production of voiced sounds (phonation)

[b] voiced

https://www.youtube.com/watch?v=eSaT1Cg1FbU

Consonants

Voicing

Are vocal folds open or closed?

Manner of articulation

How is the air constricted?

Place of articulation

Where is the air constricted?

IPA Chart

Download from:

https://www.internationalpho neticassociation.org/IPAcharts /IPA_chart_orig/IPA_charts_ E.html

THE INTERNATIONAL PHONETIC ALPHABET (revised to 2020)

CONSONANT	S (PULM	ONIC)													⊚⊕©	2020) IPA
	Bilabial	Labiodental	Dental Alveolar Postalveolar R				roflex Palatal			Ve	lar	Uv	ular	Pharyngeal		Glottal	
Plosive	рb			t d		t	d	С	J	k	g	q	G			3	
Nasal	m	m		n			η		n		ŋ		N				
Trill	В			\mathbf{r}									\mathbf{R}				
Tap or Flap		V		ſ			τ										
Fricative	φβ	f v	θð	s z	J 3	ş	z,	ç	j	x	γ	χ	R	ħ	ſ	h	ĥ
Lateral fricative				4 3													
Approximant		υ		J			J		j		щ						
Lateral approximant				1			l		Λ		L						

Symbols to the right in a cell are voiced, to the left are voiceless. Shaded areas denote articulations judged impossible.

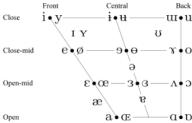
CONSONANTS (NON-PULMONIC)

Clicks	Voiced implosives	Ejectives
O Bilabial	6 Bilabial	Examples:
Dental	d Dental/alveolar	p' Bilabial
! (Post)alveolar	f Palatal	t' Dental/alveolar
+ Palatoalveolar	g Velar	k' Velar
Alveolar latera	d G Uvular	S' Alveolar fricative

OTHER SYMBOLS

M Voiceless labial-velar fricative	ÇΖ	Alveolo-palatal fricatives
W Voiced labial-velar approximant	J	Voiced alveolar lateral flap
U Voiced labial-palatal approximant	Ŋ	Simultaneous \int and $\mathbf X$
H Voiceless epiglottal fricative	A ffric	ates and double articulations

Yoiced epiglottal fricative


can be represented by two symbols joined by a tie bar if necessary. P Epiglottal plosive

DIACRITICS

	icidifico		
0	Voiceless	ņģ	Breathy voiced b a Dental t d
Ų	Voiced	ş ţ	_ Creaky voiced b a Apical t d
h	Aspirated	$\mathrm{t^h}\mathrm{d^h}$	Linguolabial t d Laminal t d
,	More rounded	Ş	w Labialized t^{w} d^{w} $^{\sim}$ Nasalized \tilde{e}
,	Less rounded	ģ	j Palatalized tj dj n Nasal release dn
_	Advanced	ų	$^{\gamma}$ Velarized t^{γ} d^{γ} 1 Lateral release d^{1}
_	Retracted	ė	$^{\Gamma}$ Pharyngealized $\ t^{\Gamma} \ d^{\Gamma}$ $^{\gamma}$ No audible release $\ d^{\gamma}$
••	Centralized	ë	~ Velarized or pharyngealized }
×	Mid-centralized	ě	Raised e (I = voiced alveolar fricative)
_	Syllabic	ņ	Lowered $\stackrel{\cdot}{\mathbf{e}}$ ($\stackrel{\cdot}{\mathbf{p}}$ = voiced bilabial approximant)
_	Non-syllabic	ė	Advanced Tongue Root e
٠	Rhoticity	or ar	Retracted Tongue Root e

Some diacritics may be placed above a symbol with a descender, e.g. $\ddot{\eta}$

Where symbols appear in pairs, the one to the right represents a rounded vowel.

SUP	RASEGMENTALS	
1	Primary stress	founa tijan
1	Secondary stress	,100Ha tijan
I	Long	er
•	Half-long	e•
J	Extra-short	ĕ
	Minor (foot) group	
ĺ	Major (intonation) grou	p
	Syllable break	.ii.ækt
_	Linking (absence of a b	reak)

TONES AND WORD ACCENTS

ĕ	or Extra	ě or	Λ	Rising
é	High	ê	V	Falling
ē	- Mid	ĕ	1	High rising
è	Low	ĕ	1	Low rising
ë] Extra low	è	4	Rising- falling
ļ	Downstep	∕ GI	obal	rise

Global fall

↑ Upstep

Interactive IPA Charts

• SPAN (Speech Production and Articulation Knowledge Group) University of Southern California https://sail.usc.edu/span/rtmri_ipa/

SPAN | speech production and articulation knowledge group | welcome | team | publications | resources

302	N	strict	Labrodi	antal.	De	tal:	Abn	ntier	Postal	vector	Peri	ofee	Pai	latel	- 4	elar	- 64	n/ar	Phanyry	peal	Chr	Call .	fraid	Ceresi		- Se
Pole	P	D:					1	4			1	4	c		R.		4				7		Om I T	* (*)		-
Pend			1	n							-	4		n		9		/*						 X		
3/8			11				11	. 1									1			-			Dose-red			-
Tel or Files				*							-3	t					15									
fittative			1	w				4	1	3		4	c	à	(3)	¥./	x			8	h		Open-mal			
planed frequency					7			1	-	-8	1	- 12	100	7.4		K				=			-		10	100
Approximate				q.								4		-	-/	W									1	
Laboral						A		-				14			1	- 30		100					Open			

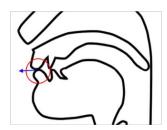
the real-time MRI IPA charts

IPA Online:

https://teaching.ncl.ac.uk/ipa/links.html

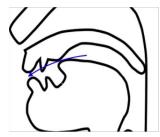
•SEEING SPEECH

6 Scottish Universities (Scottish Consortium) https://www.seeingspeech.ac.uk/

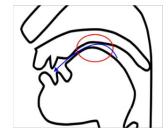

 eNunciate (A Visual Language Learning Tool) The University of British Columbia https://enunciate.arts.ubc.ca/

Manner of Articulation

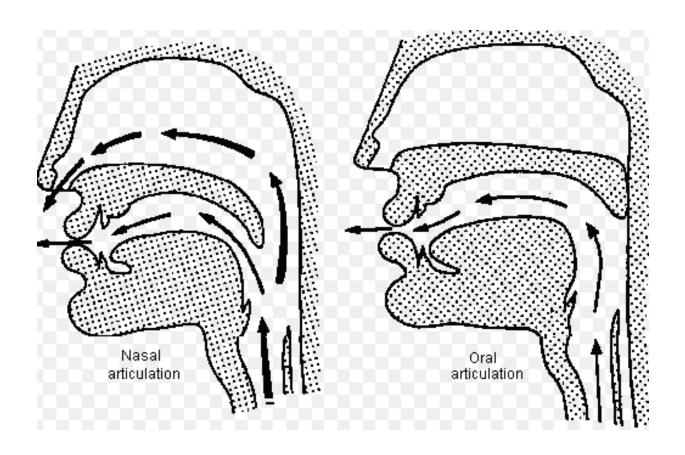
Consonants



Complete blockage of air flow

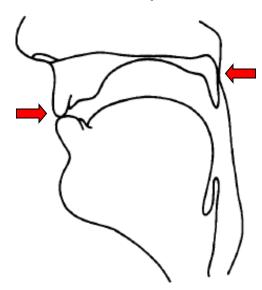


Partial blockage of air flow (turbulence)

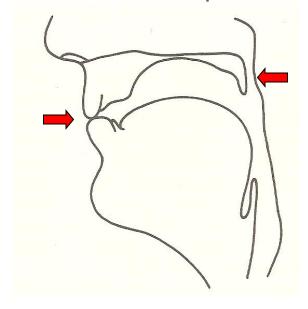


Partial blockage of air flow (no turbulence)

Nasal vs. oral articulation


• Nasal sounds

Oral sounds



Manner of Articulation

Oral Stop

Nasal Stop

Place of Articulation

Basic places of articulation

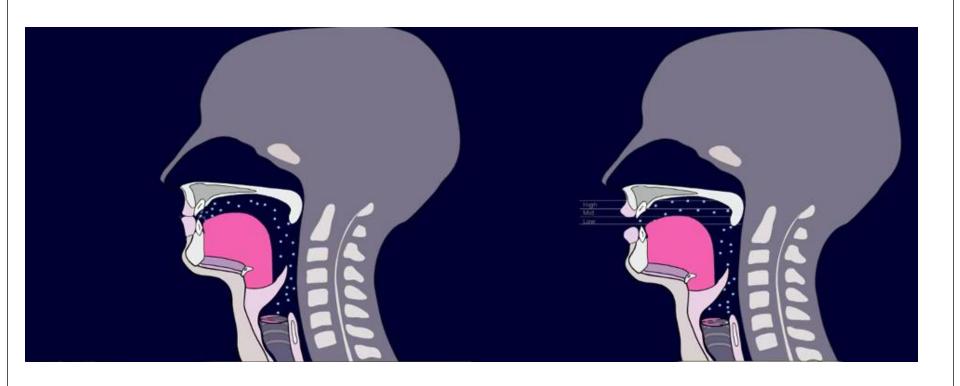
Articulator

- lips
- tongue tip/blade
- tongue dorsum

Articulation

labial

coronal

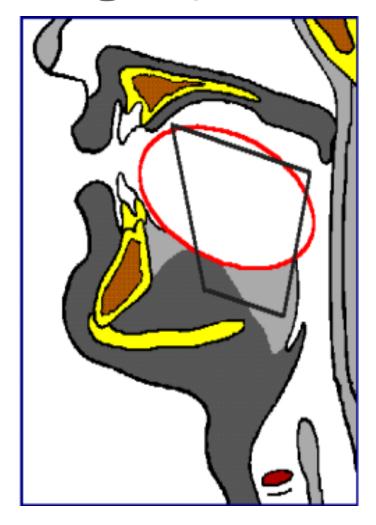

dorsal

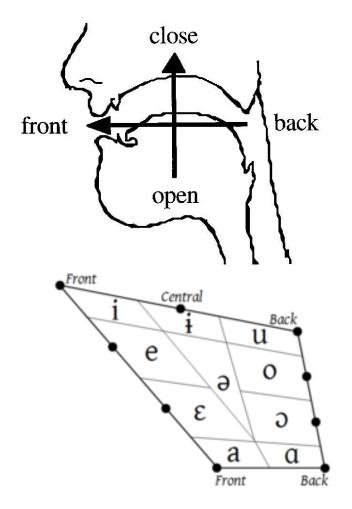
Example: "topic"

Articulatory description of Consonants

Voicing	Place of Arti	culation	Manner of Articulation	on
[p]	voiceless	bilabial	stop	
[z]	voiced	alveolar	fricative	
[?]	voiced	velar	nasal	

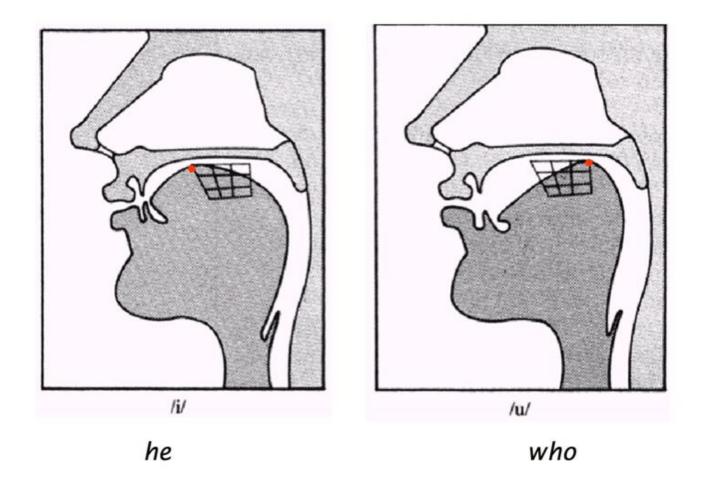
Consonants - Vowels




Articulation of vowels

Articulators do not come very close
 together → the passage of the airstream is relatively unobstructed.

- Articulatory description focuses on
 - Position of highest point of the tongue
 - Position of the lips


Tongue position

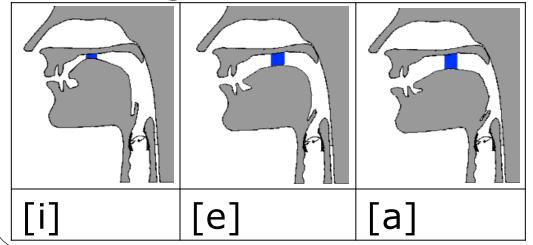
Principles of the IPA (1949)

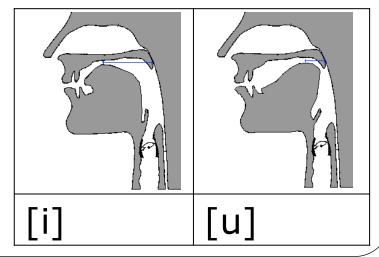
Tongue position-vowel quadrilateral

UCLA tongue video

 X ray video of tongue and lip movement during production of vowels /i, e, a, o, u/.

Download from

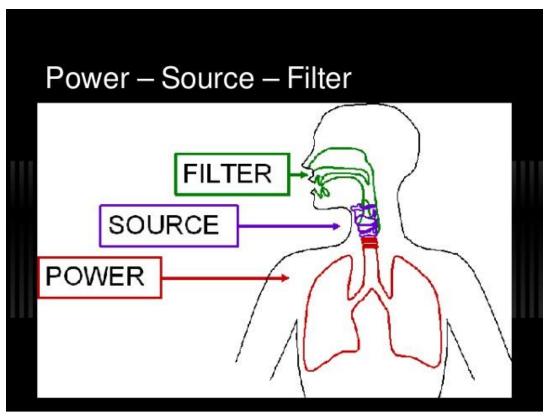

http://www.phonetics.ucla.edu/ vowels/chapter11/tongue.ht ml


Articulatory description of vowels

- 1. **height** of tongue body
- 2. front-back position of the tongue
- 3. degree of lip rounding

high/low dimension

front/back dimension


Acoustics of Vowels & Consonants

Source-Filter Theory

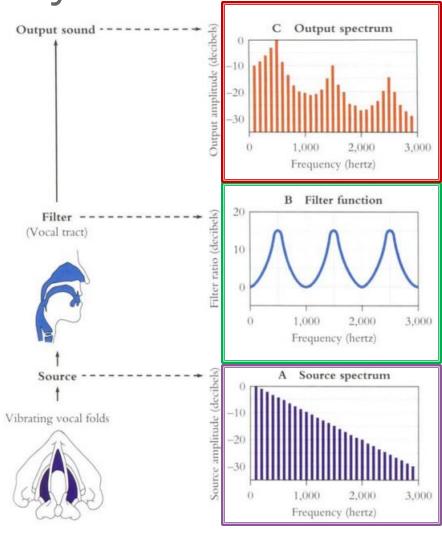
(3) Filter

2 Source

1 Energy

https://www.vocalsonstage.com/vocals-on-stage-blog/resonance-and-articulation

Source-Filter Theory


• The output spectrum is formed by the filter and is different for each sound.

• The filter amplifies or diminishes frequency components and varies according to vocal tract shape.

- Vocal fold vibration (for voiced sounds) produces the source spectrum.
 - **Spectrum:** Energy of the signal distributed with frequency

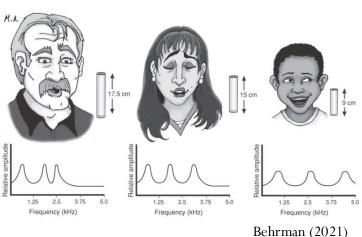
Xavier Anguera Miró

http://www.xavieranguera.com/tdp_2011/4-Source-Filter-Models.pdf

Formants

- Sounds differ from each other in three ways
 - 1. pitch/frequency
 - 2. loudness
 - 3. quality
- A vowel sound contains a number of different pitches simultaneously
 - pitch at which it was spoken
 - various overtone pitches that give it its distinctive quality

Vowel Quality
 Overtone Structure


- **Overtones = Formants**
- The lowest 3 formants distinguish vowels from each other
 - F1

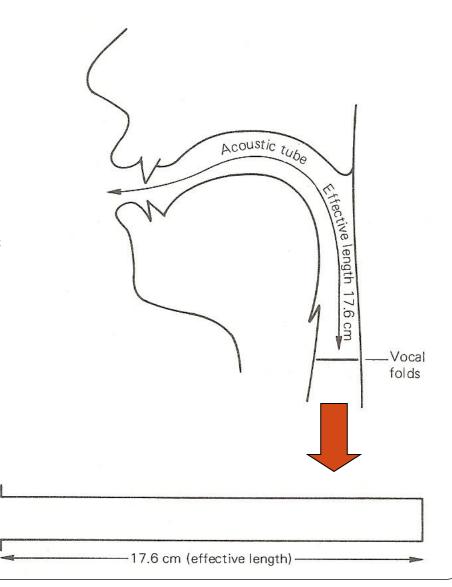
F2

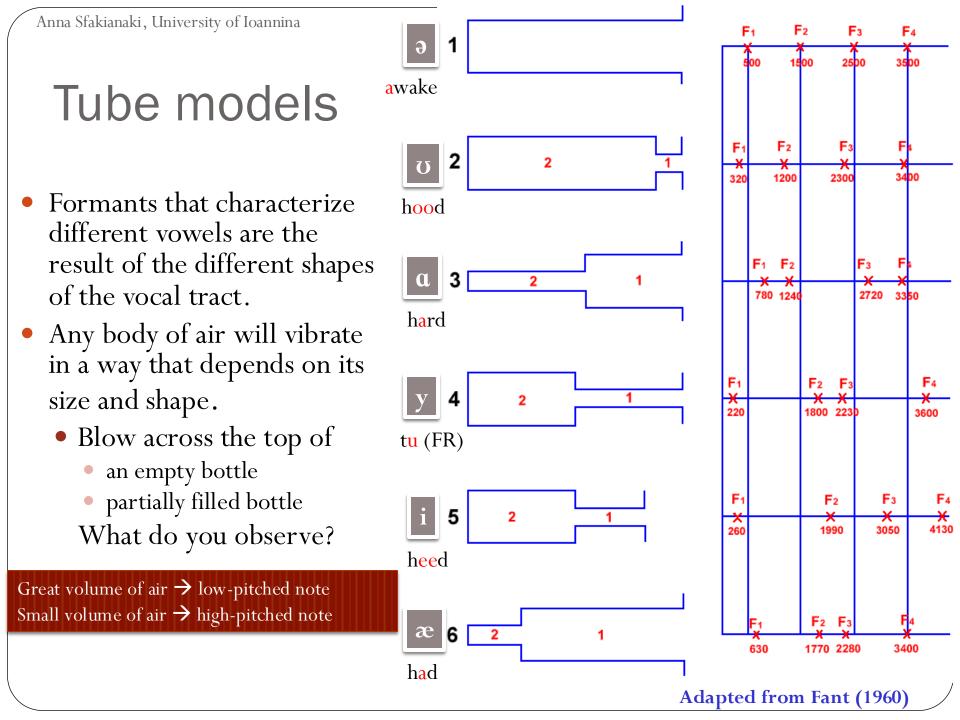
F3

Fundamental Frequency (FO)

- Fundamental frequency: number of vocal fold vibrations per second.
- Vocal folds must be vibrating in order to have F0.
- It corresponds to variations in pitch (speech melody or intonation).
- Vocal folds may vibrate faster or slower giving higher or lower pitch to the sound, BUT the formants of the sound remain the same as long as vocal tract shape remains unchanged.
- Male voice: 120 Hz
- Female voice: 220 Hz
- Child voice: 260-280 Hz
- All voiced sounds are distinguishable due to their formants.

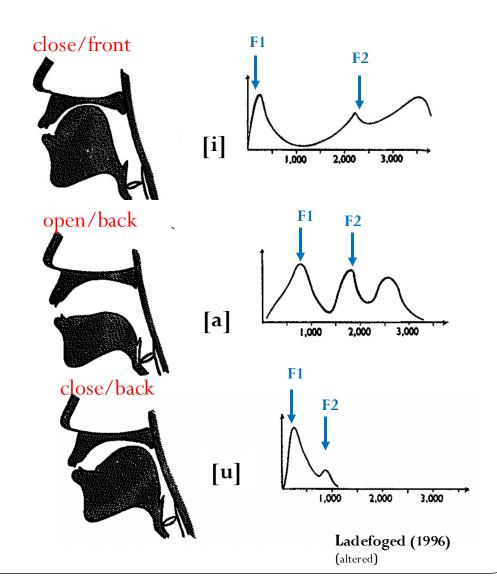
How do formants arise?

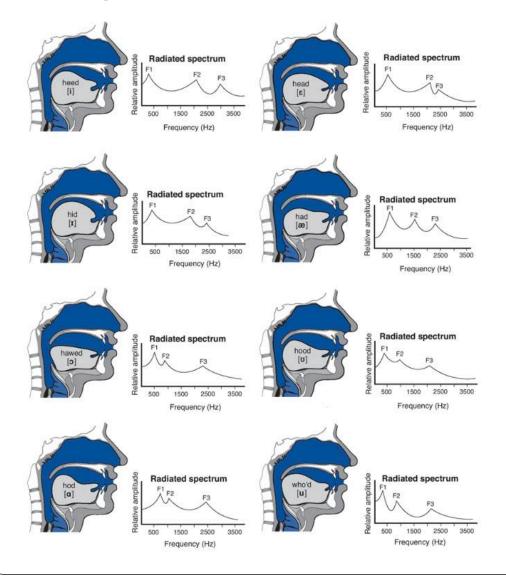

- The air in the vocal tract acts like the air in a bottle.
 - Tap on a bottle.
 - Open your mouth, make a glottal stop and flick a finger against your neck just to the side and below the jaw.

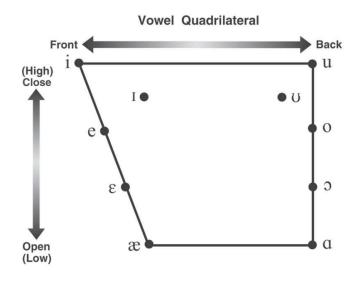

What do you observe?

• Articulate [i, e, a, o, u] without producing sound.

What do you observe?

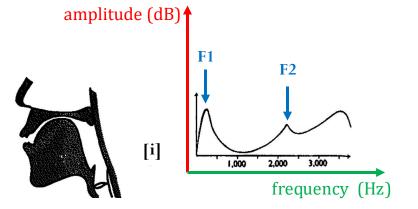

Pitch of F1 going up for [i, e] and down for [a, o, u]

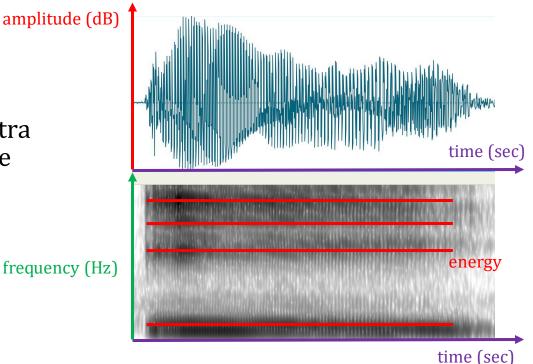



Spectra and Formants

- Frequencies that are amplified, receive more energy and correspond to formants.
- Thus every speech sound corresponds to a different spectrum, and different formants.
 - [i]: F1 and F2 at a distance
 - [a]: F1 and F2 close
 - [u]: F1 and F2 close

Spectra and Formants

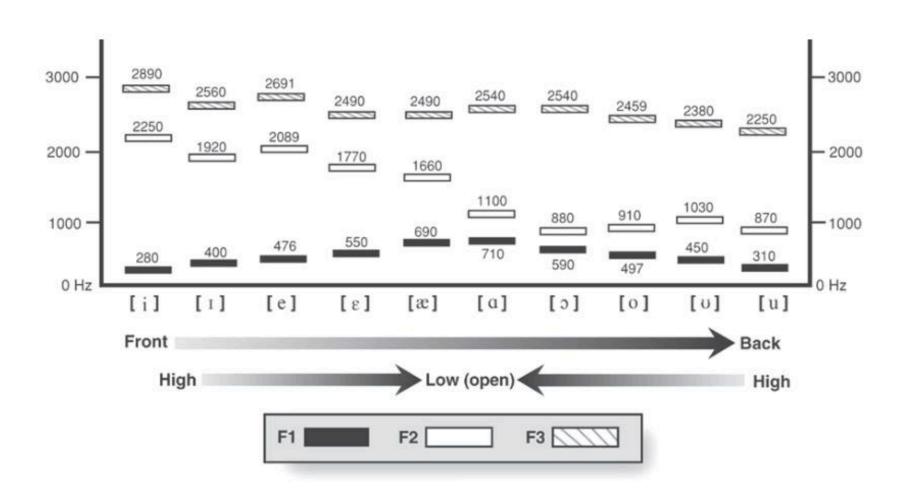




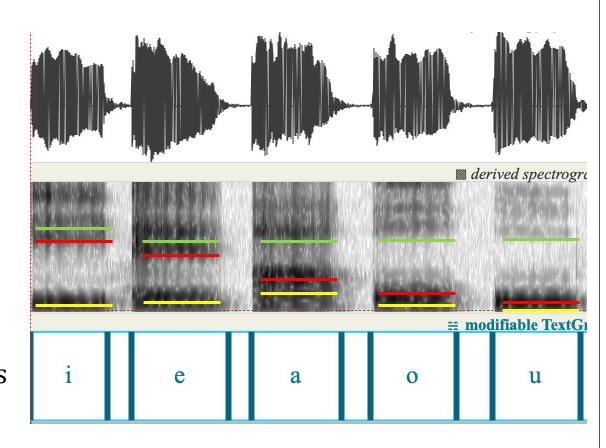
Spectrum vs Spectrogram

- Spectrum: distribution of energy with frequency
 - (amplitude vs frequency) [2D] two-dimensional
- Spectrogram: series of spectra at consecutive points in time
 - (frequency vs time vs amplitude/energy) [3D] three-dimensional

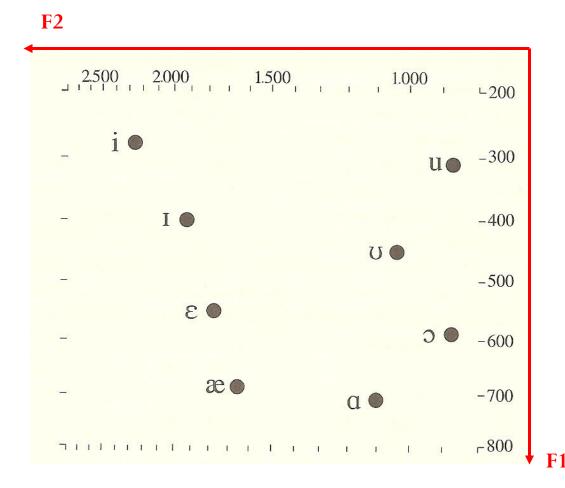
frequency (Hz)



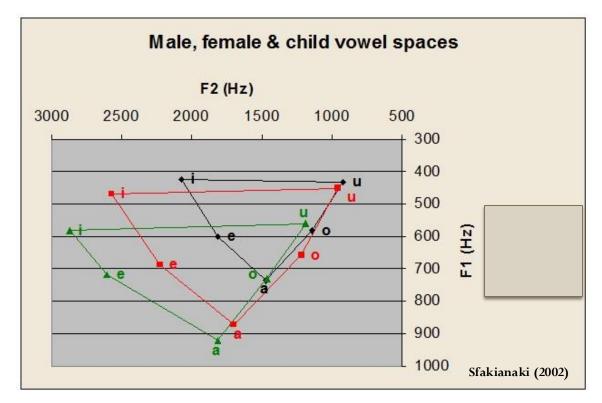
Spectrograms


Dark bands for concentrations of energy at particular frequencies showing the source and filter characteristics of speech

Acoustics of vowels


Acoustics of Greek vowels

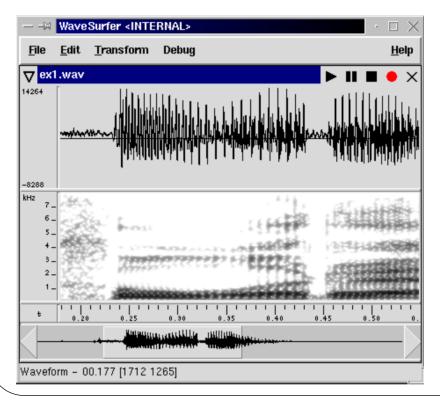
- F1: Formant 1
 Inversely related to tongue height.
 High values = low (open) vowel
- F2: Formant 2
 Related to frontness
 (or rather F2-F1)
 High values = front
 vowel
- F3: Formant 3
 Related to roundedness
 and rhotacization
 Low values =
 rhotacization /
 roundedness

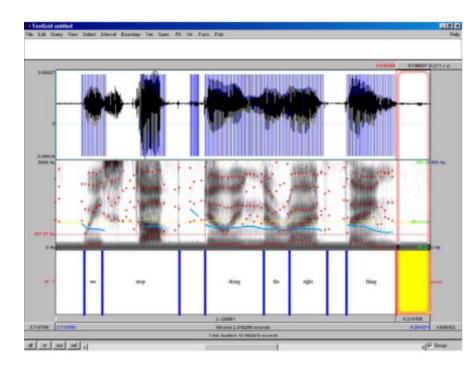

F1 by F2 plot

- Zero frequency is placed at the top right corner because formants are inversely related to traditional articulatory parameters.
- F2 scale not as expanded as F1, due to less prominent energy (F1: 80% of vowel energy).

Greek vowel space

- Formant values are influenced by anatomical characteristics (vocal tract and vocal fold size, etc.)
 - Lower in men, higher in women, even higher in children
- Formant values are also influenced by phonetic context.

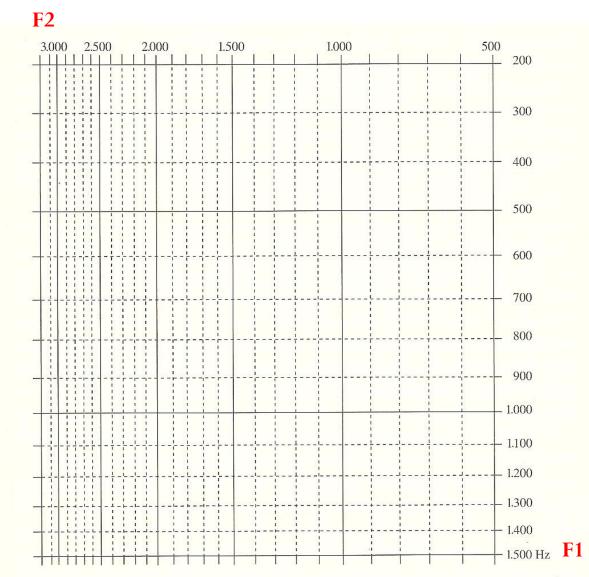

Speech synthesis demo


- The notion that vowels contain several different pitches at the same time is difficult to appreciate.
- The demo shows how a sentence is built from its component waves.
- This speech was synthesized in 1971 by Peter Ladefoged on a synthesizer at UCLA.
- "A bird in the hand is worth two in the bush" «Κάλιο πέντε και στο χέρι παρά δέκα και καρτέρει» (Greek translation)
- See the demo here:

 https://linguistics.berkeley.edu/acip/course/chapter8/speechbird/

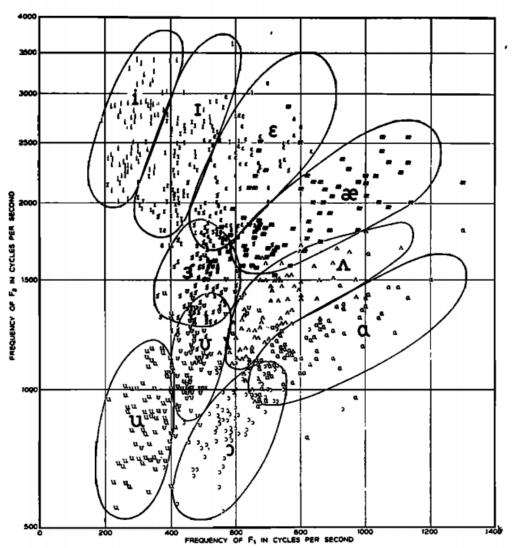
Computer Programs for acoustic analysis (free access)

Praat
 http://www.fon.hum.uva.nl/praat/
 University of Amsterdam

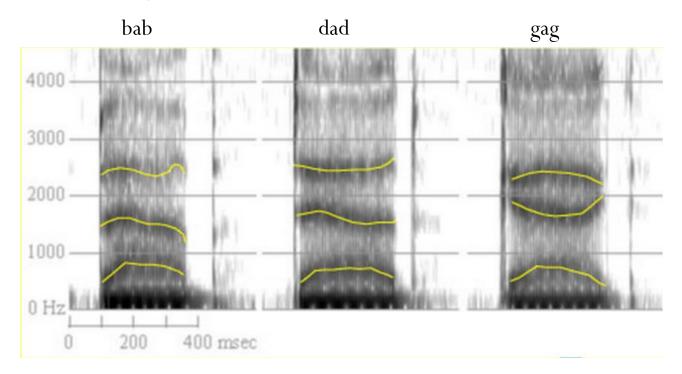


Wavesurfer

http://www.speech.kth.se/wavesurfer/


KTH (Royal Institute of Technology, Stockholm)

Exercise: Make your own F1 by F2 plot


Speaker variation

- Peterson & Barney (1952)
 - 76 speakers
 - 33 men, 28 women,15 children
 - Variability in vowel production
 - Overlap in formant frequencies

Acoustics of Consonants

- The acoustic structure of consonants is usually more complicated than that of vowels.
- In many cases, there is no distinguishable feature during the consonant articulation itself, e.g. silence part of [p, t, k].
- We have to look for the identity of the consonant at the beginning or the ending of the vowel beside it.

Anticipatory Coarticulation and Loci

- The formants at the moment of consonantal release will vary according to vowel.
- The apparent point of origin of the formant for each place of articulation is called the **locus** of that place of articulation.
- The locus depends on adjacent vowels.

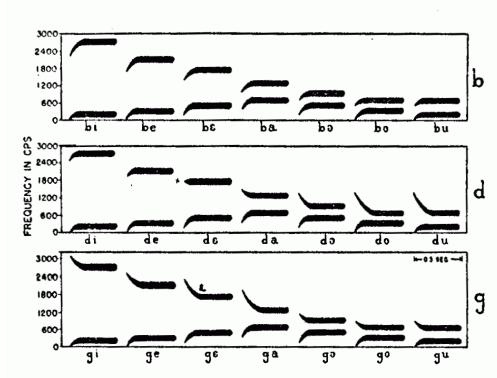
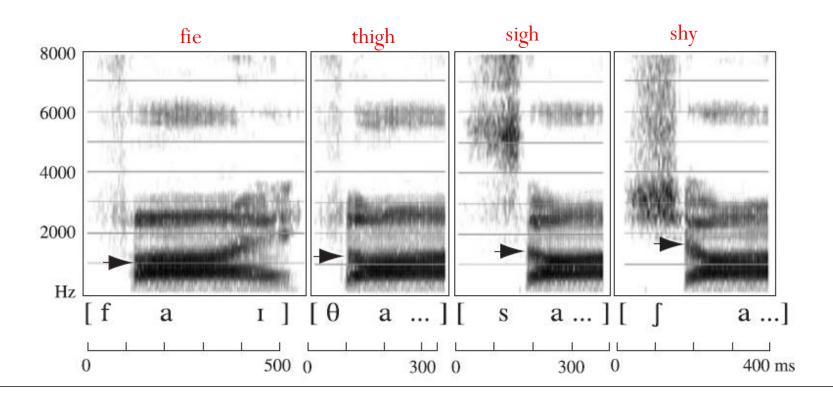
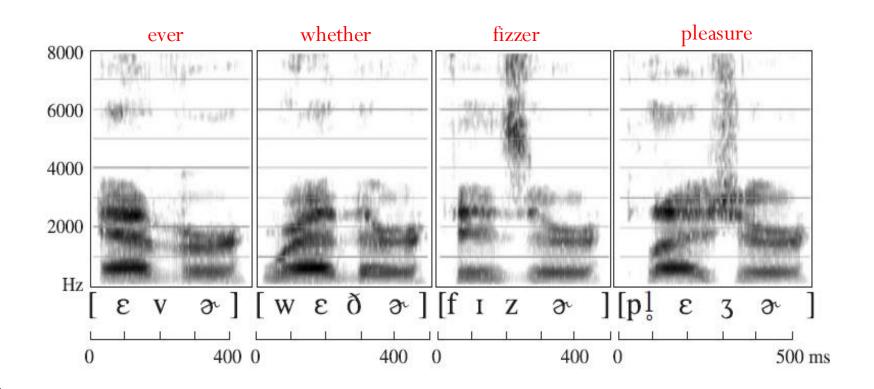
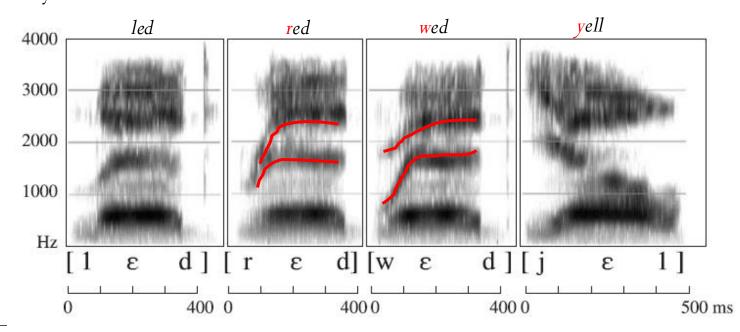
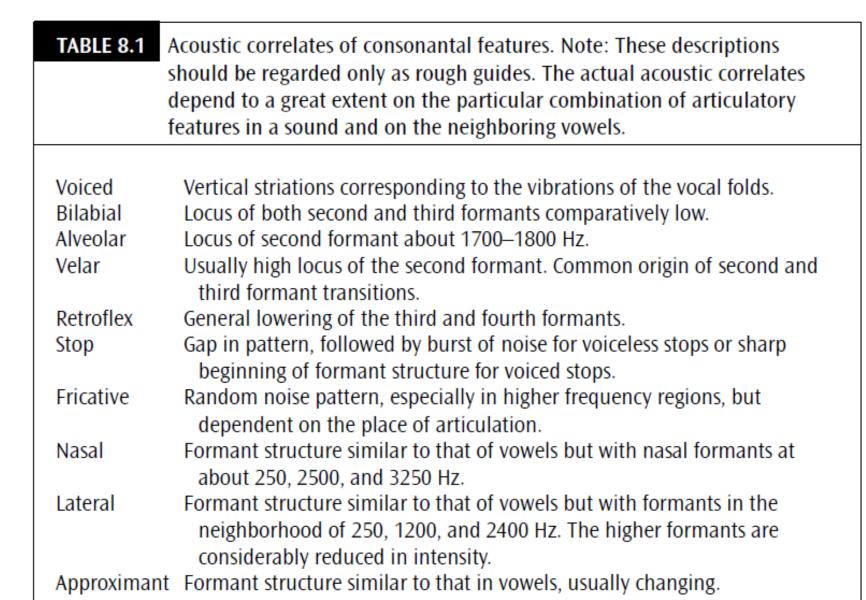



Fig. 1. Synthetic spectrograms showing second-formant transitions that produce the voiced stops before various vowels.

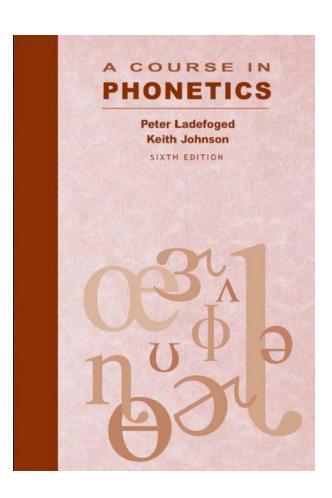

Voiceless fricatives

- Highest frequencies in speech occur over fricatives.
- Frequency scale increased to 8000 Hz.
- Both [s, \mathbb{Z}] have **larger acoustic energy** and produce **darker patterns** than [f, \mathbb{Z}]


Voiced fricatives [v, 2]


- Voiced fricatives [v, 2, z, 2] have patterns similar to their voiceless counterparts [f, 2, s, 2].
- Voiced fricatives also have vertical striations indicative of voicing.

Lateral and central approximants


- A final lateral may have little of no central contact, making it not really a lateral but a **back unrounded** vowel.
- The most obvious feature of approximant [2] is the low frequency of F2 and F3.
- There is great similarity between *red* and *wed*. Young children have difficulty trying to distinguish them.
- The approximant [w] also starts with a low position for all three formants.
- F2 of [w] has the sharpest rise, as if it were a very short [u].
- The movements of formants for [j] are like those of a very short [i].
- This is why [w] and [j] are appropriately called <u>semivowels</u>, that is, semi versions of vowels [u] and [i] respectively.

Acknowledgements

- Material for this presentation has been adapted <u>mainly</u> from chapters 1 and 8 of
 - Ladefoged, P., & Johnson, K. (2011). *A course in phonetics*. (6th ed.). Canada: Wadsworth, Cengage Learning

Read & visit...

- Ladefoged & Johnson "Articulation & Acoustics", chapters 1 and 8 (A course in phonetics", 6th ed.)
- Visit the websites (for Articulation)
 - https://corpus.linguistics.berkeley.edu/acip/course/chapter1/
 (Material from UC Berkeley Linguistics for the book "A course in phonetics")
 - http://soundsofspeech.uiowa.edu/index.html#english
 (Mobile App: Interactive Phonetic Library for American English)
 - https://www.enl.auth.gr/speakgreek/library.html (Interactive Phonetic Library for Greek)
 - http://smu-facweb.smu.ca/~s0949176/sammy/ (Interactive Sagittal Section)

- Visit the websites (for Acoustics)
 - https://www.compadre.org/books/?ID=46&About=1
 An Interactive eBook on the physics of sound (Indiana University Southeast)
 - http://zonalandeducation.com/mstm/physics/waves/waveAdder/WaveAdder/">https://zonalandeducation.com/mstm/physics/waveAdder/WaveAdder/WaveAdder/WaveAdder/WaveAdder/WaveAdder/">https://zonalandeducation.com/mstm/physics/waveAdder/WaveAdder/WaveAdder/
 - http://www.youtube.com/watch?v=Gg4IHbiITd0
 Introduction to spectrogram analysis (FloridaLinguistics.com)
 - https://brucehayes.org/103/SpectrogramReading/index.htm
 Spectrogram reading practice (by Bruce Hayes, UCLA)
 - http://home.cc.umanitoba.ca/~robh/howto.html
 Monthly Mystery Spectrogram Webzone —Rob Hagiwara's professional web-space
 - http://www.acoustics.hut.fi/publications/files/theses/lemmetty_mst/chap4.html

Problems in Speech Synthesis (Helsinki University of Technology)